Buscar este blog

miércoles, 3 de junio de 2015

Atomos y relatividad

El átomo es un constituyente materia ordinaria, con propiedades químicas bien definidas, que mantiene su identidad. Cada elemento químico está formado por átomos del mismo tipo (con la misma estructura electrónica básica), y que no es posible dividir mediante procesos químicos. Está compuesto por un núcleo atómico, en el que se concentra casi toda su masa, rodeado de una nube de electrones. El núcleo está formado por protones, con carga positiva, y neutrones, eléctricamente neutros. Los electrones, cargados negativamente, permanecen ligados a este mediante la fuerza electromagnética.

En física, el término cuanto o cuantio (del latín Quantum, plural Quanta, que representa una cantidad de algo) denotaba en la física cuántica primitiva tanto el valor mínimo que puede tomar una determinada magnitud en un sistema físico, como la mínima variación posible de este parámetro al pasar de un estado discreto a otro.1 Se hablaba de que una determinada magnitud estaba cuantizada según el valor de cuanto. Es decir, cuanto es una proporción hecha por la magnitud dada.

La teoría de la relatividad está compuesta a grandes rasgos por dos grandes teorías (la de la relatividad especial y la de la relatividad general) formuladas por Albert Einstein a principios del siglo XX, que pretendían resolver la incompatibilidad existente entre la mecánica newtoniana y el electromagnetismo.

 La primera teoría, publicada en 1905, trata de la física del movimiento de los cuerpos en ausencia de fuerzas gravitatorias, en el que se hacían compatibles las ecuaciones de Maxwell del electromagnetismo con una reformulación de las leyes del movimiento.



La segunda, de 1915, es una teoría de la gravedad que reemplaza a la gravedad newtoniana pero coincide numéricamente con ella en campos gravitatorios débiles. La teoría general se reduce a la teoría especial en ausencia de campos gravitatorios.




Circuitos RLC

En electrodinámica un circuito RLC es un circuito lineal que contiene una resistencia eléctrica, una bobina (inductancia) y un condensador (capacitancia).

Existen dos tipos de circuitos RLC, en serie o en paralelo, según la interconexión de los tres tipos de componentes. El comportamiento de un circuito RLC se describen generalmente por una ecuación diferencial de segundo orden (en donde los circuitos RC o RL se comportan como circuitos de primer orden).

Con ayuda de un generador de señales, es posible inyectar en el circuito oscilaciones y observar en algunos casos el fenómeno de resonancia, caracterizado por un aumento de la corriente (ya que la señal de entrada elegida corresponde a la pulsación propia del circuito, calculable a partir de la ecuación diferencial que lo rige).

Utilización de los circuitos RLC
Los circuitos RLC son generalmente utilizados para realizar filtros de frecuencias, o de transformadores de impedancia. Estos circuitos pueden entonces comportar múltiples inductancias y condensadores: se habla entonces de "red LC".

Un circuito LC simple es denominado de segundo orden porque su función de transferencia comporta un polinomio de segundo grado en el denominador.


Circuitos RC

En un circuito RC en serie la corriente (corriente alterna) que pasa por la resistor y por el capacitor es la misma.

El voltaje entregado VS es igual a la suma fasorial de la caída de voltaje en el resistor (Vr) y de la caìda de voltaje en el capacitor (Vc). Ver la siguiente fórmula: Vs = Vr + Vc (suma fasorial)

Circuito RC serie en corriente alterna 
Esto significa que cuando la corriente está en su punto más alto (corriente pico), será así tanto en el resistor como en el capacitor.



Pero algo diferente pasa con los voltajes. En el resistor, el voltaje y la corriente están en fase (sus valores máximos y mínimos coinciden en el tiempo). Pero el voltaje en el capacitor no es así.

Como el capacitor se opone a cambios bruscos de voltaje, el voltaje en el capacitor está retrasado con respecto a la corriente que pasa por él. (el valor máximo de voltaje en el capacitor sucede después del valor máximo de corriente en 90°).

Estos 90º equivalen a ¼ de la longitud de onda dada por la frecuencia de la corriente que está pasando por el circuito.

El voltaje total que alimenta el circuito RC en serie es igual a la suma fasorial del voltaje en el resistor y el voltaje en el capacitor.

Circuitos RL


Los circuitos RL son aquellos que contienen una bobina (inductor) que tiene autoinductancia, esto quiere decir que evita cambios instantáneos en la corriente. Siempre se desprecia la autoinductancia en el resto del circuito puesto que se considera mucho menor a la del inductor.

Para un tiempo igual a cero, la corriente comenzará a crecer y el inductor producirá igualmente una fuerza electromotriz en sentido contrario, lo cual hará que la corriente no aumente. A esto se le conoce como fuerza contraelectromotriz.
Esta fem está dada por:  V = -L (inductancia) dI/dt

Debido a que la corriente aumentará con el tiempo, el cambio será positivo (dI/dt) y la tensión será negativa al haber una caída de la misma en el inductor.

Según kirchhoff:  V = (IR) + [L (dI /  dt)]
  IR = Caída de voltaje a través de la resistencia.

Esta es una ecuación diferencial y se puede hacer la sustitución:
  x = (V/R) – I  es decir;  dx = -dI

Sustituyendo en la ecuación:  x + [(L/R)(dx/dt)] = 0  dx/x = - (R/L) dt
Integrando:  ln (x/xo) = -(R/L) t
Despejando x:   x = xo e –Rt / L
Debido a que  xo = V/R

El tiempo es cero , y corriente cero  V/R – I = V/R e –Rt / L
  I = (V/R) (1 - e –Rt / L)

El tiempo  del circuito está representado por t = L/R
I = (V/R) (1 – e – 1/t)

Donde para un tiempo infinito, la corriente de la malla será  I = V/R. Y se puede considerar entonces el cambio de la corriente en el tiempo como cero.

Para verificar la ecuación que implica a ty a I, se deriva una vez y se reemplaza en la inicial:  dI/dt = V/L e – 1/t

Se sustituye:  V = (IR) + [L (dI /  dt)]
V = [ (V/R) (1 – e – 1/t)R + (L V/ L e – 1/t)]
 V – V e – 1/t = V – V e – 1/t
OSCILACIONES EN UN CIRCUITO LC
Cuando un condensador se conecta a un inductor, tanto la corriente como la carga den el condensador oscila. Cuando existe una resistencia, hay una disipación de energía en el sistema porque una cuanta se convierte en calor en la resistencia, por lo tanto las oscilaciones son amortiguadas. Por el momento, se ignorará la resistencia.




Corriente Alterna (C.A.)

Además de la existencia de fuentes de FEM de corriente directa o continua (C.D.) (como la que suministran las pilas o las baterías, cuya tensión o voltaje mantiene siempre su polaridad fija), se genera también otro tipo de corriente denominada alterna (C.A.), que se diferencia de la directa por el cambio constante de polaridad que efectúa por cada ciclo de tiempo.
En el año 1882 el físico, matemático, inventor e ingeniero Nikola Tesla, diseñó y construyó el primer motor de inducción de CA. Posteriormente el físico William Stanley, reutilizó, en 1885, el principio de inducción para transferir la CA entre dos circuitos eléctricamente aislados. La idea central fue la de enrollar un par de bobinas en una base de hierro común, denominada bobina de inducción. De este modo se obtuvo lo que sería el precursor del actual transformador.



La característica principal de una corriente alterna es que durante un instante de tiempo un polo es negativo y el otro positivo, mientras que en el instante siguiente las polaridades se invierten tantas veces como ciclos por segundo o hertz posea esa corriente. No obstante, aunque se produzca un constante cambio de polaridad, la corriente siempre fluirá del polo negativo al positivo, tal como ocurre en las fuentes de FEM que suministran corriente directa.

En Europa la corriente alterna que llega a los hogares es de 220 volt y tiene una frecuencia de 50 Hz, mientras que en la mayoría de los países de América la tensión de la corriente es de 110 ó 120 volt, con una frecuencia de 60 Hz. La forma más común de generar corriente alterna es empleando grandes generadores o alternadores ubicados en plantas termoeléctricas, hidroeléctricas o centrales atómicas.

Mallas y Nodos

● Una rama es un solo elemento, ya sea si este es activo o pasivo. En otras palabras, una rama representa a cualquier elemento de dos terminales.

● Un nodo es un punto de conexión entre dos o más ramas. Comúnmente un nodo es representado con un punto en un circuito. Si un cortocircuito conecta a dos nodos, estos son vistos como un solo nodo.


● Una malla o lazo es cualquier trayectoria cerrada en un circuito. Un lazo inicia en un nodo, pasa por un conjunto de nodos y retorna al nodo inicial sin pasar por ningún nodo más de una vez.


Se dice que un lazo es independiente si contiene al menos una rama que no forma parte de ningún otro lazo independiente. Los lazos o trayectorias independientes dan por resultado conjuntos independientes de ecuaciones.
Una red con b ramas, n nodos y l lazos independientes satisface el teorema fundamental de la topología de redes:
B = 1 + n - 1

LEYES DE KIRCHHOFF
Ley de nodos
La suma algebraica de las corrientes en un nodo es igual a cero.
Ley de Nodos
I1 – I2 – I3 = 0



Ley de mallasLa suma de todas las caídas de tensión en un malla es igual a la suma de todas las tensiones aplicada
Ley de Mallas

VAB = V1 + V2 + V3


Corriente Electrica: Circuitos de Corriente Directa

La corriente directa (CD) o corriente continua (CC) es aquella cuyas cargas eléctricas o electrones fluyen siempre en el mismo sentido en un circuito eléctrico cerrado, moviéndose del polo negativo hacia el polo positivo de una fuente de fuerza electromotriz (FEM), tal como ocurre en las baterías, las dinamos o en cualquier otra fuente generadora de ese tipo de corriente eléctrica.


Fuentes suministradoras de corriente directa o continua. A la derecha, una batería de las comúnmente utilizada en los coches y todo tipo de vehículo motorizado. A la izquierda, pilas de amplio uso, lo mismo en linternas que en aparatos y dispositivos eléctricos y electrónicos.


Las cargas eléctricas se pueden comparar con el líquido contenido en la tubería de una instalación hidráulica. Si la función de una bomba hidráulica es poner en movimiento el líquido contenido en una tubería, la función de la tensión o voltaje que proporciona la fuente de fuerza electromotriz (FEM) es, precisamente, bombear o poner en movimiento las cargas contenidas en el cable conductor del circuito eléctrico. Los elementos o materiales que mejor permiten el flujo de cargas eléctricas son los metales y reciben el nombre de “conductores”.

Es importante conocer que ni las baterías, ni los generadores, ni ningún otro dispositivo similar crea cargas eléctricas pues, de hecho, todos los elementos conocidos en la naturaleza las contienen, pero para establecer el flujo en forma de corriente eléctrica es necesario ponerlas en movimiento.



Interacción Materia-Energia

Todo lo que nos rodea está formado por un componente común: la materia. Normalmente, para referirnos a los objetos usamos términos como materia, masa, peso, volumen. Para clarificar los conceptos, digamos que:

  • Materia es todo lo que tiene masa y ocupa un lugar en el espacio.
  • Masa es la cantidad de materia que tiene un cuerpo.
  • Volumen es el espacio ocupado por la masa.
  • Cuerpo es una porción limitada de materia.


En física y filosofía, materia es el término para referirse a los constituyentes de la realidad material objetiva, entendiendo por objetiva que pueda ser percibida de la misma forma por diversos sujetos. Se considera que es lo que forma la parte sensible de los objetos perceptibles o detectables por medios físicos. Es decir es todo aquello que ocupa un sitio en el espacio, se puede tocar, se puede sentir, se puede medir, etc. Uno de los principios modernos sobre la materia, propuesto por Einstein, es que ésta no se destruye, sino que sólo se transforma, o en términos más precisos, "la masa relativística equivalente" se conserva.

Lo anterior nos permite comprender la transición producida de la física clásica a la física moderna, ya que anteriormente se pensaba que la materia y la energía eran dos cosas diferentes que se encontraban a la base de todo fenómeno físico. Sin embargo, la física moderna nos permite comprender que la materia se puede transformar en energía y la energía puede convertirse en materia.

En física, energía se define como la capacidad para realizar un trabajo.
En todos los actos cotidianos se emplea algo de fuerza. Al levantarnos, peinarnos, caminar, correr, jugar, trabajar, etc.



Existen diferentes formas de energía. Y por su naturaleza tenemos energía Potencial y Cinética.
*La potencial es la energía contenida en un cuerpo, por ejemplo: la energía humana, la del agua, del vapor, etc.
*La energía cinética es la que posee un cuerpo debido a su movimiento o velocidad; por ejemplo: la energía del agua al caer de una cascada, la energía del aire en movimiento, etc.